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1 Introduction

A recurrent dream in theoretical physics is that a gravitational state with a nonvanishing
cosmological constant is unstable. This idea was explicitly stated in [28] more than a
quarter century ago, but it is perhaps older. This has been predicated mainly in the
context of de Sitter space, but if the stable gravitational state should be Minkowski space
there is a clear need of a similar statement concerning negative values of the cosmological
constant. Given the fact that there is some evidence that classically the constant curvature,
maximally symmetric spaces are stable with respect to linear perturbations irrespectively
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of the sign of the curvature [1], the purported instabilities must have quantum origin.
The work of Abbott and Deser established positive Killing energy for small fluctuations
of the gravitational field. In cases such as de Sitter space, in which there is no Killing
vector which is globally timelike, the fluctuations have got to be contained inside the
corresponding horizon. In Anti de Sitter space they were able to show stability with
respect to all asymptotically vanishing fluctuations whatever large.

The instability claim has been recently put on a new basis in a recent paper by
Polyakov [30] (where some references to earlier work can be found; many that are not
there can be found in the book [10]).

It is well-known that there is a one-parameter family of so-called vacuum states in
de Sitter space, first uncovered by Chernikov and Tagirov [13]; a recent reference is [32].
Ariadna’s thread in this maze is usually taken as the strength and physical location of the
singularities of the propagators (cf. [2]). What is proposed in reference [30] is to consider
instead a different guiding principle, namely the ”composition principle”, a property which
seems natural from the first quantized path integral approach to the theory. This property
uniquely selects a particular propagator.

This propagator is then used to claim that the presence of quantum fields interacting
in de Sitter space an instability appears which manifest itself as an imaginary part of the
free energy of the quantum fields. The stability is associated to the concept of eternity [30].
It is not fully clear to begin with, that this is the correct observable to consider, at least
when there are horizons present (like in de Sitter space, in which no Killing energy can
be globally defined). We shall nevertheless compute it, because it is anyway the first step
towards more satisfactory calculations.

This claim is possibly related, but not identical, to the one put forward since quite a few
years by Tsamis and Woodard [35] and recently criticized by Garriga and Tanaka [16]. The
latter is a quantum gravitational effect; whereas the one we are considering in this paper
is supposed to appear when considering quantum fields in a gravitational background, and
neglecting backreaction effects.

The relationship of these different claims with the status of de Sitter space as a vacuum
of quantum gravity [39] is not altogether clear. To the best of our knowledge, de Sitter
space is at best a metastable solution of string theory [23]. But the reason for that seems
to rely strongly on gravitational interactions.

The aim of the present paper is a quite modest one, namely to examine these assertions
from a slightly different perspective, by studying the heat kernel which is nothing else than
a particular solution of the heat equation, which is in turn a sort of euclidean version of
Schrödinger’s equation. This allows a straightforward determination of the free energy to
one loop order. We follow the lead of the solution all the way down from the sphere towards
its different analytical continuations. The setup of the problem is then as follows. The free
energy is given by a path integral over the gravitational fluctuations around a background
ḡµν as well as around fluctuations of the matter fields around their backgrounds φ̄a, which
are assumed to be solutions of the classical equations of motion. If the gauge fixing is such
that no mixing matter/gravity is generated, then the free energy is given to one loop order
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by a set of determinants.

W
[
ḡµν , φ̄a

] ≡ S̄
(
ḡµν , φ̄a

)− 1
2

tr log M2
µναβ

(
ḡµν , φ̄a

)
+tr log Mgh

(
ḡµν , φ̄a

)− 1
2

tr log M2
(
ḡµν , φ̄a

)
(1.1)

where M2
µναβ

(
ḡµν , φ̄a

)
represents the quadratic operator acting on gravitational fluctua-

tions using a background gauge fixing, Mgh

(
ḡµν , φ̄a

)
the corresponding operator for the

ghosts and finally, M2
(
ḡµν , φ̄a

)
stands for the quadratic operator for the matter fields.

Assuming, for simplicity, that all matter is composed by scalar fields, and neglecting
the dynamics of the gravitational field, id est

Sm ≡
∫
dnx

√
|ḡ|1

2
ḡµνδab∂µφ

a∂νφ
b −

∑
a

ξR̄ (φa)2 − V (φa)

= S̄m − 1
2

∫
dnx

√
|ḡ|φa ∂a∂bV |φ̄ φb +O

(
φ2
)

(1.2)

that is, the operator that interests us is, in an obvious notation,

M2
(
ḡµν , φ̄a

) ≡ −∆̄δab − V̄ab (1.3)

Generically, we are only able to compute it in the approximation where the background
scalar field is constant; that is, we are evaluating the effective potential.

2 The composition law

It is well known (cf. for example the discussion in [29]) that in flat space the Klein-Gordon
propagator can be recovered from the first quantized path integral

G(x, y) ≡
∫
DX(s)e−mS(X)

where the integral extends to all paths such that

X(0) = x

X(1) = y (2.1)

and the action for each path is

S(X) ≡
∫ 1

0
dτ

√
δµνẊµẊν

This representation makes manifest that the propagator enjoys a quantum mechanical
composition law, at least in the euclidean case:∫

dnz G(x, z)G(z, y) =
∫
dnzDX(s)DY (s)e−m{S(X)+S(Y )} (2.2)
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where X(s) goes from x to z and Y (s) from z to y. Then∫
dnzG(x, z)G(z, y) =

∫
DX(s)e−mS(X)F (m2, S(X)

)
(2.3)

where now X(s) goes from x to y, and the extra factor F (m2, S(X)
)

takes into account
the integral over the intermediate point z along the curve and leads to∫

dnz G(x, z)G(z, y) = − ∂

∂m2
G(x, y) (2.4)

(This is equivalent to assert that F (m2, S(X)
)

= 1
2mS(X). We are aware of no simple

argument for this).
In a recent paper Polyakov [30] suggests that unitarity in quantum field theory is

equivalent to this path composition. Asymptotically (for large separation between the
points) the propagator should behave as

G(x, y) ∼ e−ims(x,y) (2.5)

where s(x, y) is the geodesic distance between the points x and y.
The flat space Klein-Gordon propagator can be easily recovered [29] through1

G(x, y) =
∫ ∞

0
dτK(τ ;x, y) (2.8)

where K(τ ;x, y) is the Schrödinger functional

K(τ ;x, y) ≡
∫
DXe−i

R τ
0 dσ

“
Ẋ2

2σ
+σm

2

2

”
(2.9)

and τ is the gauge invariant distance τ ≡ ∫ 1
0 e(λ)dλ. Polyakov’s path composition is then

a simple consequence of Feynman’s kernel quantum mechanical composition law∫
dnzK (τ1; y, z)K (τ2; z, x) = K (τ1 + τ2; y, x) (2.10)

Once these facts are understood, the temptation to choose them as the starting point for
the study of quantum fields in a gravitational background is irresistible.

The preceding results are by no means restricted to flat space. We shall explain in a
moment that given the heat kernel, that is, the solution of the heat equation in an arbitrary

1In flat space this identity is true in any dimension for true propagators (id est, solutions of the inho-

mogeneous equation) because using the Fourier representation

G(x, y) =

Z
dnp

(2π)n
eip(x−y)

p2 +m2
(2.6)

and Z
dnzG(x, z)G(z, y) =

Z
dnz

dnp

(2π)n
dnk

(2π)n
eip(x−z)

p2 +m2

eik(z−y)

k2 +m2
= − ∂

∂m2
G(x, y) (2.7)

Direct verification is more laborious.
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spacetime ∂τK = (∆ −m2)K with the initial conditions K(0;x) = δ(x) we can obtain a
Green’s function for the Klein-Gordon equation through

G(x) =
∫ ∞

0
K(τ ;x) dτ =

∫
θ(τ)K(τ ;x) dτ (2.11)

(∆−m2)G(x) =
∫ ∞

0
(∆−m2)K(τ ;x) dτ

=
∫ ∞

0
∂τK(τ ;x) dτ = K(τ ;x)

∣∣∣∞
0

= −δ(x) (2.12)

Whenever the composition principle of Schrödinger (or the heat) equation holds∫
K(τ ;x, z)K(σ; z, y) dnz = K(τ + σ;x, y) (2.13)

this propagator (and others related) enjoys automatically the composition law (2.4)∫
G(x, z)G(z, y) dnz =

∫
C
dtdsK(t;x, z)K(s; z, y) dnz (2.14)

=
∫
C
dtdsK(t+ s;x, y) =

1
2

∫
C′
dτdσK(τ ;x, y) ,

where the integration domain in the t, s plane is the upper right quadrant C. We have
performed the transformation τ = t + s, σ = t − s, and the new domain C ′ can be
parametrized as

1
2

∫
dτdσ θ(τ + σ)θ(τ − σ)K(τ ;x, y) =

∫
dτ τθ(τ)K(τ ;x, y) = −∂m2G(x, y) (2.15)

where we take in account that the heat kernel for mass m is related to the massless one by
Km2 = e−m

2τKm=0. The conclusion of the above is that starting from the heat kernel, the
“composition principle” is a simple consequence of the quantum mechanical closure relation∑

z

|z〉〈z| = 1 (2.16)

3 The heat kernel

What we shall denote by heat kernel is what mathematicians call the fundamental solution
of the real heat equation (FSRHE) made popular by Kac when he asked the question as to
whether one could hear the shape of a drum [22] (the short answer is that one cannot in
general). The mathematicians call heat equation to

∆K(x, y; τ)− µ2∂K(x, y; τ)
∂τ

= 0

where ∆ ≡ ∇µ∇µ, and we have introduced a mass scale µ to make τ dimensionless (or,
what is equivalent, to consider the operator ∆

µ2 , whose eigenvalues are also dimensionless).
The FSRHE is defined as the solution such that lim

τ→0+
K(x, y; τ) = δ(x, y). The importance
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of the FSRHE is that it is unique for compact connected C∞ riemannian manifolds without
boundary [9]. Formally, it can be predicated that

K(τ) ≡ e
τ
µ2 ∆

(the convention is that the operator in the exponent is negative definite for τ ∈ R+.) so
that a Green’s function can be defined as

G ≡ −∆−1 ≡
∫ ∞

0
K(τ)dτ

This Green’s function is also unique under the same conditions than the FSRHE is.
We will deal with this equation with an additional mass term, as in the previous

section. In the particular case of euclidean space Rn (which is non compact, by the way)

K0 (x, y; τ) =
µn−2

(4πτ)n/2
e
−µ

2(x−y)2

4τ
−m

2

µ2 τ

(where µ is an arbitrary mass scale whose physical meaning is the same as the one appearing
in dimensional regularization). The famous integral∫ ∞

0
dxxν−1e−

β
x
−γx =

(
β

γ

)ν/2
Kν

(
2
√
βγ
)

(3.1)

leads to the euclidean Green’s function

G0 (x, y) ≡
∫ ∞

0
dτK0 (x, y; τ) =

1
2π

(
m

2π|x− y|
)n/2−1

Kn/2−1 (m|x− y|)

where |x|2 ≡∑n
1 x

2
i and Kn(x) is the Bessel function of imaginary argument. This is the

mother of all Green’s functions.
This whole procedure can in some sense be reversed. If we consider the heat ker-

nel corresponding to the massless Klein-Gordon operator, Km=0(τ) ≡ K(τ)e
m2

µ2 τ , then
the relationship between the heat kernel and the (massive) Green’s function is just a
Laplace transform

Gm(x) =
∫ ∞

0
Km=0(τ)e−τ

m2

µ2 dτ

This means that whenever the Green’s function as a function of m2 is bounded by a
polynomial in the half plane Rem2 ≥ c, the Laplace transform can be inverted to yield

Km=0(τ) =
1
µ2

∫ c+i∞

c−i∞
dm2e

τ m
2

µ2 Gm(x)

We shall extend this precise and beautiful mathematical framework in two ways. First
of all, physics forces upon us the consideration of operators somewhat more general than the
covariant laplacian, for example by allowing a generalized mass term (as well as nonminimal
operators for higher spins [8]). Secondly, we are eventually interested in pseudo-riemannian,
Lorentzian geometries which are moreover non-compact.

– 6 –
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One of our main worries in the present paper will precisely be how to go back and
forth from one signature to the other. What we have seen in the previous paragraph is
that this particular Green’s function also satisfies Polyakov’s composition principle.

The class of spaces we are going to be interested at in this paper are all related to the
sphere by analytic continuation. The sphere Sn itself can be defined as the compact form of
the symmetric space SO(n+ 1)/SO(n). It can also be usefully defined as the hypersurface

n∑
A=0

X2
A ≡ δABXAXB = l2 (3.2)

on a flat Rn+1 space2 with metric ds2 = δABdX
AdXB; or else the real projective space,

RPn = Sn/Z2, where Z2 is the antipodal mapping

Z2 : XA → −XA (3.3)

The sphere is then the universal covering space of the projective plane, and π1(RPn) = Z2.
Functions on the projective plane are given by even functions on the sphere

f(XA) = f(−XA) (3.4)

The projective plane is non-orientable for even values of n, but it is orientable for odd
values of n. For example, RP1 ∼ S1.

In their work on the Schrödinger equation, Grosche and Steiner [17] are led towards
the following integral, which gives what is essentially the Schrödinger propagator:

K
(
Ω,Ω′; τ

) ≡ ∫ DΩ e
i
R τ
0 dλ

“
ml2

2
Ω̇2+

n(n−2)

8ml2

”
= eiτ

n(n−2)

8ml2

∫
DΩ ei

R τ
0 dλml

2

2
Ω̇2

≡ eiτ
n(n−2)

8ml2 Z
(
Ω,Ω′; τ

)
(3.5)

where Ω ≡ ~n is a unit vector, defining a point on the unit sphere ~n ∈ Sn, and can be
characterized in polar coordinates by a set of angles, θ1 . . . θn.

The path integral will be done by means of Feynman’s time slicing technique. The
action reads

S =
ml2

2

n∑
i=1

(
~Ωi − ~Ωi−1

)2
= ml2

n∑
i=1

(1− cos ψi−1) (3.6)

where we have defined
cos ψi−1 ≡ ~Ωi · ~Ωi−1 (3.7)

The expansion discussed in the appendix conveys the fact that

ez cos ψ =
(z

2

)−n−1
2 Γ

(
n− 1

2

) ∞∑
j=0

(
j +

n− 1
2

)
Ij+n−1

2
(z)C

n−1
2

j (cos ψ) (3.8)

Z
(
θ, θ′; τ

)
= eiτ

n(n−2)

8ml2

∫
DΩ ei

R
ml2

2
Ω̇2

= eiτ
n(n−2)

8ml2

∫ ∏
i

dΩi e
iml2

P
i(1−cos ψi−1) (3.9)

2These coordinates, which we are going to represent in capital letters, are usually denoted as Weierstrass

coordinates.
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the integrations to be done are, schematically,∫
dΩ1 . . . dΩn−1

∑
j1 ~m1

∑
j2 ~m2

. . . Yj1 ~m1
(Ω1)Y ∗j1 ~m1

(Ω0)Yj2 ~m2
(Ω2)Y ∗j2 ~m2

(Ω1) . . .

. . .
∑

Yjn ~mn(Ωn)Y ∗jn ~mn(Ωn−1) =
∑
j ~m

Yj ~m(Ωn)Y ∗j ~m(Ω0) ∼
∑
j

C
n−1

2
j (cos ψ)

The final result of [17] is

K
(
Ω,Ω′; τ

)
=

1
V (Sn)

∞∑
j=0

2j + n− 1
n− 1

C
n−1

2
j (Ω · Ω′)e− iτ

2ml2
j(j+n−1) (3.10)

Our main tool in order to study the effective potential in constant curvature spaces will
be the analogous of the preceding computation for our Klein-Gordon equation, as well
as the representation of the delta function on the sphere Sn−1 by means of Gegenbauer
polynomials (cf. appendix) , id est,

K(τ ; Ω,Ω′) =
1

V (Sn)

∑
j

n− 1 + 2j
n− 1

C
n−1

2
j (Ω · Ω′)e−τ(m2l2+j(j+n−1)) (3.11)

that is the solution of the heat equation such that

lim
τ→0+

K(τ ; Ω,Ω′) = δ
(
Ω− Ω′

)
(3.12)

where the delta function reads

δ(Ω− Ω′) =
1

V (Sn)

∑
j

n− 1 + 2j
n− 1

C
n−1

2
j (cos θn) (3.13)

We can see the heat kernel formally as

K(τ) ≡ e−τM̄2
(3.14)

where M̄2 is the positive definite operator acting on quadratic fluctuations around the
background field, id est,

M̄2 ≡ −∆ + ∂2V (φ̄) (3.15)

and we include masses in the potential.
Let us mention that whenever the full eigenvalue problem for the operator M̄2 is

known, there is a formal FSRHE. Using the discrete notation,

M̄2un(x) = λnun(x) (3.16)

with eigenfunctions which can be chosen to obey

(un, um) ≡
∫
dµ(x)u∗n(x)um(x) = δnm (3.17)

– 8 –
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(where the measure dµ(x) is usually
√|g|dnx) as well as a completeness relationship of

the type ∑
n

u∗n(x)un(y) = δ(x− y) (3.18)

then the following is the sought for FSRHE

K(x, y|τ) =
∑
n

e−λnτu∗n(x)un(y) (3.19)

whose imaginary part is determined by the one of the eigenvalues themselves.
As we have already advertised, in order to study the free energy up to one loop order,

it is much more convenient to study the heat kernel, than the Green’s function, because it
gives the desired result directly

W =
1
2

∫ ∞
0

dτ

τ
tr
∫
dnx

√
|g|K (τ ;x, x) (3.20)

This definition includes the definition based to the zeta-function (which is the finite part)
as well as the divergent counterterms.

Before that, however, let us clarify a few points on the relationship between Green’s
functions in constant curvature spaces. Although the defining equations of the different
spaces themselves in Weierstrass coordinates are analytic continuations of the equation of
the sphere, some subtleties appear with the analytic continuation of Green’s functions.

4 Green’s functions in constant curvature spaces

We shall mainly be concerned in this paper with fundamental solutions of the Klein-Gordon
equation in the real sections of the sphere, invariant under the full group of isometries.
Related analysis have been performed in [4, 12]. The homogeneous version of this equation
takes always the same form in these spaces:

(z2 − 1)G′′ + nzG′ ±m2l2 = 0 (4.1)

where z is the corresponding geodesic distance for each space (cf. A.1).
The problem of finding the invariant Green’s functions of this equation can be solved

in a simple and general way. The full space of solutions is two-dimensional. All we have
to do is extending the domain of definition of these functions to the appropriate region of
the real axis for each surface.

We have to take care also of the singularities we obtain. We are interested in a single
source (typically in the “north pole” z = 1), or perhaps in symmetric solutions under Z2

in order to obtain Green’s functions for the projective case.
In the figure 4 we have summarized the results. Combining solutions of the

generic Klein-Gordon equation (hypergeometric functions) with the appropriate singularity
(F
(

1+z
2

)
, R), we can build several different propagators for each space. Here R is pro-

portional to a Legendre Q function, finite at z = ∞. G∞ means a Green’s function that
diverges at infinity. Gα stands for the Green’s functions of the α-vacua.

– 9 –
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Sn dSn

F
(

1+z
2

)
R(z)

Solutions to (� +m2)G = δ

EAdSn
AdSn

G(z)
GBD(z) ∈ Gα

R(z)

R(z) ∈ Gα(z)

|z| < 1
z ∈ R

z ∈ Rz > 1

G∞(z)

R(z)
G∞(z)

Figure 1. Route sheet of analytic continuations.

4.1 Flat spacetime

The flat spacetime case is interesting in order to know the appropriate short distance
behaviour. We saw in the previous that the calculation of the n-dimensional Green’s
function in an euclidean flat spacetime gives

G(x) =
∫

eipx

p2 +m2

dnp

(2π)n
=

1
2π

( m

2πr

)n
2
−1
Kn

2
−1(mr) (4.2)

When we perform the analytic continuation to the Feynman propagator in lorentzian
signature, we implicitly chose the prescription such that the result is still a propagator, i.e.
that keeps the appropriate singularity:

GF (x) =
i

2π

(
m

2π
√−x2 + iε

)n
2
−1

Kn
2
−1(m

√
−x2 + iε)

That this is correct, can be checked performing the integral
∫

dnk

(2π)n
eikx

−k2 +m2 − iε explic-

itly. The branch cut of
√−x2 does not depend on the sign on time, but just on |t|, as was

expected from a time ordering.

– 10 –
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The singularity of this propagator is:

G(x) x2→0−−−→ i

(2π)
n
2

2
n
2
−2Γ

(
n

2
− 1
)

(−x2 + iε)1−n
2 + [log(−x2 + iε)] (4.3)

where the term in brackets appears when n is even.
This prescription precisely gives us the correct singularity to recover a delta function.

Other possibilities lead to homogeneous solutions which correspond to important functions:

• Wightman function −iW : x2 → −x2 + iεt

• Symmetric function G(1): Re W

• Pauli-Jordan function (commutator) D: Im W

4.2 Sphere

In the appendix we give some details on different metrics for constant curvature spaces
with different signatures. The Klein-Gordon equation in the n-dimensional sphere reads:

1
sin θn−1

∂θ(sin θn−1∂θG)−m2l2G = 0 =
1

(1− z2)
n−2

2

∂z((1− z2)
n
2 ∂zG)−m2l2G (4.4)

where z = cos θ. This is almost an hypergeometric equation:

(z2 − 1)G′′ + nzG′ +m2l2G = 0 (4.5)

with the solutions:3

G(z) = F±(z) = F

(
1± z

2

)
≡ F

(
iµ+

n− 1
2

,−iµ+
n− 1

2
;
n

2
;
1± z

2

)
(4.6)

where m2l2 = µ2 + (n−1)2

4 . Each one is singular respectively in z = ±1, and this singularity
corresponds precisely to delta function in opposite points. in this way we recover the well
known fact that there is a single Green’s function in the sphere.

The composition law holds for this Green’s function, given that is unique and therefore,
proportional to the alternate expression:

G(Ω · Ω′) =
∑
j~k

Y
j~k

(Ω)Y
j~k

(Ω′)∗

j(j + n− 1) +m2
(4.7)

given in terms of eigenfunctions of ∆, i.e. spherical harmonics, and their eigenvalues. It is
straightforward to check the composition law with this formula.

3The possible values of µ are real and positive, or imaginary, with n−1
2

> −iµ > 0
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4.3 de Sitter space

The Klein-Gordon equation in this case reads
1

cosh τn−1
∂τ
(
cosh τn−1∂τG

)− 1
cosh τ2 sin θn−2

∂θ
(
sin θn−2∂θG

)
+m2l2G = 0 (4.8)

(z2 − 1)G′′ + nzG′ +m2l2G = 0 , z = cosh τ cos θ (4.9)

The solution is given by the same expression as before. In order to provide a function
defined over the full de Sitter space (for all z ∈ R), we must specify the values in the
branch cuts. In addition, since the signature of spacetime has changed, this prescription
will determine the character of the singularity, i.e. homogeneous or not.

Looking to the flat spacetime case, the solution is simple, since the short distance
behaviour should match. The correct analytic continuation is:

GBD(z) = F

(
iµ+

n− 1
2

,−iµ+
n− 1

2
;
n

2
;
1 + z

2
− iε

)
(4.10)

and this is (proportional to) the euclidean or Bunch-Davies propagator. In addition we can
continue the both solutions in such a way that they remain homogeneous, for example:

ReF±(z) = ReF
(
iµ+

n− 1
2

,−iµ+
n− 1

2
;
n

2
;
1± z

2

)
(4.11)

where we denote by Re, iImf(z) = f(z + iε) ± f(z − iε). This combination cancels the
delta divergence.

The above expression spans the space of homogeneous invariant solutions that origi-
nates the ambiguity in the propagator:

G(z) = GBD(z) + αReF+(z) + βReF−(z) (4.12)

However, if the propagator comes from a vacuum expectation value, we know [2] that just
a 1-parameter family survives, the α (α > 0) vacuum:4

Gα(z) =
i|Γ (iµ+ n−1

2

) |2
2(4π)

n
2 {−Γ(2− n

2 )|Γ(n2 )}

{
cosh 2αReF

(
1 + z

2

)
+ (4.13)

+ sinh 2αReF
(

1− z
2

)
− i ImF

(
1 + z

2

)}
The term in the {|} corresponds to the {odd|even} case.

4The most general expression, de Sitter invariant except for the discrete symmetries, is the α, β vacuum,

with β ∈ [0, 2π):

Gα,β(x, y) =
i|Γ
`
iµ+ n−1

2

´
|2

2(4π)
n
2 {−Γ(2− n

2
)|Γ(n

2
)}

(
cosh 2αReF

„
1 + z

2

«
+

+ sinh 2α

»
cosβReF

„
1− z

2

«
− sinβ σImF

„
1− z

2

«–
− i ImF

„
1 + z

2

«)
where σ is the sign of the time-ordering of (xA, y). This is defined only in the case z < −1, but for z > −1

the imaginary part of F
`

1−z
2

´
vanishes, as in the case of the conmmutator function. This expression for

β 6= 0 is not fully de Sitter invariant, i.e. it does not depend only on z, due precisely to the presence of

this sign.
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4.4 Euclidean Anti de Sitter space

Now the Klein-Gordon equation reads

(z2 − 1)G′′ + nzG′ −m2l2G = 0 (4.14)

The solutions are pretty similar to the sphere case:

G(z) = F

(
µ+

n− 1
2

,−µ+
n− 1

2
;
n

2
;
1± z

2

)
(4.15)

where µ2 = m2l2 +
(
n−1

2

)2. This time µ > n−1
2 .

The negative sign solution is regular in z = 1 so it is purely homogeneous. Given
that now z ≥ 1, the positive sign solution needs a prescription in the branch cut to be
meaningful. The exact behaviour near z = 1 depends on the parity of n, but in both cases
the expressions are like:

F

(
1 + z

2

)
= . . .+ . . . ·

(
1− z

2

)1−n
2

(4.16)

where . . . something regular in z = 1 (or a logarithm). We can see from this equation that
taking the upper or lower limit in the real axis, z ± iε gives us a Green’s function G∞.

However, this propagator G∞ diverges in the infinity, as we can see from the expansion
of the hypergeometric function near the infinity:

F (α, β; γ; z) z→∞−−−→ const (−z)−α + const (−z)−β (4.17)

from which we get:

G∞(z) z→∞−−−→ const
(
−1 + z

2

)−µ−n−1
2

+ const
(
−1 + z

2

)µ−n−1
2

(4.18)

Both the imaginary and the real part of this expression diverge (this is due to the second
term), so in general no prescription gives us a propagator that vanishes at infinity.5

An appropriate solution can be obtained combining the G∞ with the homogeneous
solutions. The exact expression can be given in terms of Legendre associated functions:

G(z) = (z2 − 1)
1−n

4 Q
n−1

2

µ− 1
2

(z) ∼ z−µ−n−1
2 F

(
µ

2
+
n+ 1

4
,
µ

2
+
n− 1

4
;µ+ 1;

1
z2

)
(4.19)

This special combination, that we will abbreviate R
n−1

2

µ− 1
2

, is a solution of (4.14). The

composition principle holds for this propagator, given that this solution is the Laplace
transform of the Schrödinger propagator of EAdS [17].

5In fact, some specific values of m are such that taking only the imaginary [real] part of the function,

for n odd [even], this term is cancelled.
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4.5 Anti de Sitter space

The Klein-Gordon equation in AdS is identical to the EAdS case. The variable z can take
any real value again, as in de Sitter, so the the solutions to (4.14) can be continued in the
same way as in (4.10), (4.11). We have just to take in account that now iµ→ µ, where µ
means the same as in the EAdS case.

Since the Anti de Sitter space has a well defined spatial infinity at z =∞, if we require
the propagator to vanish there, we will obtain the same R expression as in the EAdS

case (4.19). However, in this case we have to extend the domain to the full real axis.
In order to get the correct prescription, we need the relationship between the R and the
hypergeometric solutions:

R
n−2

2
ν (z) = ρn,ν

{
e∓iπνF

(
1− z

2

)
+ ϕ± F

(
1 + z

2

)}
(4.20)

ρn,ν =
2−

n
2 πΓ(n2 + ν)

Γ(n2 )Γ(2− n
2 + ν){i cosπν| sinπν} ; ϕ± = {i(−1)

n±1
2 |(−1)

n
2 } (4.21)

where again we write together the {odd|even} case, and the upper (lower) sign is for positive
(negative) imaginary part of z.

An expression like (4.12) is the most general Green’s function. Since the delta singu-
larities are in the imaginary part of the F solutions, and the homogeneous pieces are the
real parts, we have to eliminate the imaginary part of F− ≡ F

(
1−z

2

)
, and it is easy to see

that the appropriate combination to achieve it is

R̃
n−2

2
ν (z) = eiπνR

n−2
2

ν (z + iε) + e−iπνR
n−2

2
ν (z − iε) (4.22)

The detailed expressions in the even and odd cases are respectively:

R̃
n−2

2
ν (z) ∼ ReF−(z) + (−1)

n
2 cosπν ReF+(z)− (−1)

n
2 sinπν ImF+(z) = (4.23)

= ReF−(z) + (−1)
n
2 i sinhπµReF+(z) + (−1)

n
2 coshπµ ImF+(z)

R̃
n−2

2
ν (z) ∼ ReF−(z) + (−1)

n−1
2 sinπν ReF+(z) + (−1)

n−1
2 cosπν ImF+(z) = (4.24)

= ReF−(z)− (−1)
n−1

2 coshπµReF+(z) + (−1)
n−1

2 i sinhπµ ImF+(z)

The second line in each case come from ν = iµ− 1
2 , i.e. the de Sitter case. As we can see,

if and only if the dimension n is odd the R solution can be analytically continued into an
alpha-beta vacuum, because of the inappropriate i factors in the even case. The parameters
of that vacuum are sinh 2α = cschπµ, and β = 0 (β = π) for (−1)

n+1
2 positive (negative).6

4.6 Projective spaces

A function defined over the projective version of these spaces can always be lifted to an
symmetric function defined over the original space. It is very easy to obtain the most
general Green’s function of such an space, given the previous classification.

6This is valid only in the case of m > n−1
2

in de Sitter. For lower masses there is no possibility of

analytic continuation, because of the i factors again.
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For the projective plane RPn = Sn/Z2, there is a single Green function corresponding
to the projection ofG(z)+G(−z), whereG(z) is the propagator in 4.6 with the positive sign.

In the projective versions of de Sitter or Anti de Sitter, dSn/Z2 and AdSn/Z2, we
found that the most general Green’s function is:

G(z) = GBD(z) + αReF+(z) + βReF−(z) (4.25)

where α and β are arbitrary constants. If we symmetrize this expression, we get the general
propagator for these spacetimes:

GP (z) = GBD(z) +GBD(−z) + α (ReF+(z) + ReF−(z)) (4.26)

In particular, we can symmetrize the R̃ solution finite at z = ±∞.

5 The imaginary part of the effective potential

In flat space there is a systematic way of determining the ground state of a physical system,
namely, to minimize the effective potential (the effective action for constant backgrounds).
This is the physical principle that generalizes minimization of energy for classical systems.
Things get more complicated when gravitational fields are present.

First of all there is no fully satisfactory concept of energy in general gravitational
backgrounds. In de Sitter space a Killing energy with support on the space orthogonal to
a given observer, u, is well-defined through

E(u) ≡
∫
dn−1xuµT

µνkν (5.1)

where the energy-momentum tensor is defined by expanding à la Abbott-Deser around a
background. The lack of global existence of the Killings means that precise statements are
only possible outside the corresponding horizons. In the general situation the situation is
even worse, and several definitions (such as the Hawking-Geroch, Penrose, Nester-Witten
or Brown-York, [34]) of quasilocal energy exist, none of which is fully satisfactory, and
besides all of them seem difficult to compute in quantum field theory.

Besides it is the case in general that

|0+〉 6= |0−〉 (5.2)

The usual Feynman path integral computes expectation values

〈0+|O|0−〉 (5.3)

so that some modification is in order to get expectation values such as

〈0−|O|0−〉 (5.4)

One way to do it is the closed time path (CTP) formalism of Schwinger and Keldysh [31],
but euclidean methods are also available [36].

The proper approach would be to study the structural stability of the Dyson-Schwinger
equations for the whole system.

What we have done in this paper instead is to compute the simplest and most naive
expression for the energy, namely the effective potential.
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• As a matter of fact, the formula (3.11) for the sphere Sn could be directly continued

to de Sitter space, given that the Gegenbauer polynomials C
n−1

2
j are defined for all

real z. Then, the expression:

K(τ ; z) =
1

V (Sn)

∑
j

n− 1 + 2j
n− 1

C
n−1

2
j (z)e−τ(m2l2+V ′′(φ̄)+j(j+n−1)) (5.5)

is a natural candidate for the heat kernel in de Sitter as well.7

Then we can evaluate the free energy given by formula (3.20):

W =
1
2

∫ ∞
0

dτ

τ

∫
dnx

√
|g|K (τ ;x, x) =

VoldS
2

∫ ∞
0

dτ

τ
K(τ ; 1) (5.6)

=
VoldS

2V (Sn)

∫ ∞
0

dτ

τ

∑
j

n− 1 + 2j
n− 1

C
n−1

2
j (1)e−

τ
µ2 (m2+V ′′(φ̄)+j(j+n−1)/l2)

where we have redefined the heat kernel in order to get a mass dimension 2 equation.

Here C
n−1

2
j (1) =

(
j + n− 2

j

)
. This expression, which is divergent,8 is purely real

(the C
n−1

2
l (1) are integers), so no imaginary parts appear.

• In the reference [25] the spectrum of the laplacian for de Sitter space, dSn, anti de
Sitter space AdSn and euclidean (anti) de Sitter space EAdSn is computed and the
eigenfunctions are constructed as well. The spectrum is identical9 for both dSn and
AdSn and has got a discrete part (similar to the one corresponding to the sphere)

−L (L+ n− 1) /l2

where
L = −

[n
2

]
+ 1,−

[n
2

]
+ 2, . . .−

[n
2

]
+ j . . .

and we represent by [z] the integer part of z. The starting point of the spectrum is
actually the only difference between the sphere and both de Sitter and anti de Sitter
spaces, as long as the discrete part of the said spectrum is concerned. In terms of
j ∈ N, for even dimension, n = 2m, or else for odd dimension n = 2m+ 1

L = −−j (j − 1) +m (m− 1)
4l2

7 It seems plain that the analytic continuation, should it work at all, it not will do it term by term. The

eigenvalues are not the same in the sphere as in de Sitter space, not to mention the fact that the sphere is

a compact space whereas de Sitter is not. Nevertheless, there is a well-known duality between compact and

non-compact symmetric spaces [19]. Some further caveats on the analytic continuation of the heat kernel

have been made in [7]. It is true that until the whole sum is performed and then the explicit continuation

is made, surprises may appear, so perhaps some wise restrain is called for.
8General theorems imply that the trace of the heat kernel must diverge when τ → 0 as K ∼ µnτ−n/2.

This just means that the sum and the integral do not commute.
9Except for a sign perhaps, depending on the sign chosen for the metric for each space.
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There is also a continuous piece of the spectrum, which can be written in the form

1
l2

(
Λ2 +

(n− 1)2

4

)
where Λ ∈ [0,∞)

In the case of EAdSn only the continuous spectrum appears. So the situation is as
follows: the two euclidean spaces enjoy only one type of spectrum; discrete in the case
of the sphere Sn and continuum in the case of EAdSn; whereas the two manifolds
with lorentzian signature (AdSn and dSn) carry both discrete and continuous spectra.
In all cases the eigenvalues are of course real.

The eigenfunctions are explicitly known and can be find in the references just
quoted. It is enough for our purposes though to point out that they obey a
completeness relationship,

∑
L

YL(x)∗YL(y) +
∫
dΛZΛ(x)∗ZΛ(y) = δ (x, y) (5.7)

• Let us nevertheless perform a simple approximation (in the case of the sphere; the
other cases are very similar), just to get an idea of the result. We shall explore the
high angular momentum region,

∑
j

jn−1e
− τ
µ2 (j+n−1)j/l2 ∼

∫ ∞
0

djjn−1e
− τ
µ2l2

j2 =
(µl)n

2τ
n
2

Γ
(n

2

)

We then get in this approximation

W ∼ µnln
∫ ∞
µ2

Λ2

dτ

τ1+n
2

e
−m

2+V ′′(φ̄)
µ2 τ = (m2l2 + V ′′(φ̄)l2)

n
2 Γ
(
−n

2
,
m2 + V ′′(φ̄)

Λ2

)

=

{
odd n : 0

even n : − (−1)
n
2

(n
2

)! (m2l2 + V ′′(φ̄)l2)
n
2 log Λ2

m2+V ′′(φ̄)
+ 2Λnln

n + . . .
(5.8)

Here, as in flat space, the only possible imaginary part comes from the logarithm,
that is, when

m2 + V ′′
(
φ̄
)

µ2
≤ 0

This is in agreement with general theorems [18] asserting that the only way a non
vanishing imaginary part can appear in a manifestly real integral is from the region
in which the integral diverges.

On the other hand, his is exactly the situation when spontaneous symmetry breaking
occurs in flat space and, as we shall argue in the next paragraph, it is believed to be
well understood.
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6 Conclusions

The effective potential of quantum fields propagating in a constant curvature space, cor-
responding to a cosmological constant of either sign, has been computed using the heat
kernel as our main tool. Most Green’s functions that appear obey Polyakov’s composition
principle, although other possibilities have been examined as well. The general analytic
continuation of the sphere

Sn ∼ SO(n+ 1)/SO(n) (6.1)

has been considered; we believe this to be physically important, in order to determine
whether the purported instability appears only for one sign of the cosmological constant,
or for both, in which case it would be possible that the endpoint of the instability would
have been flat Minkowski space.

No imaginary part for the effective potential has been obtained except in those cases
in which the potential is such that in flat space leads to spontaneous symmetry breaking;
that is, when ∂2Veff(φ̄) < 0 for some range of the argument, like in the famous mexican
hat potentials; and this particular imaginary part is in principle well understood cf. [37].
It can be shown from first principles [33] that the effective potential Veff(φ̄) corresponds to
the expectation value of the energy density in a Fock state |Ψ〉 which minimizes 〈Ψ|H|Ψ〉
subject to the constraint 〈Ψ|φ|Ψ〉 = φ̄. This implies that Veff must be real and convex.

What happens for those ranges for which ∂2Veff(φ̄) < 0 is that the state that mini-
mizes the energy (let us call it |E0〉) is a quantum superposition of two or more vacuum
states, and the configurations for which the expectation value of the field is constant are
unstable towards decay into |E0〉; the imaginary part ImVeff(φ̄) just gives half the decay
rate corresponding to this process per unit volume, Γ

(|φ̄〉 → |E0〉
)
.

This is the only imaginary part of the effective potential within the class of models
studied in this paper. Our results seem to be compatible with those in [27].

We would like to finish the paper by pointing out an argument10 clarifying when one
is to expect instabilities of the background field. The fact that the functional integral of a
total derivative vanishes implies

0 =
∫
DgµνDbDcDφ δ

δgµν(x)
ei(Sgrav(gµν)+Sgf (gµν)+Sgh(b,c,gµν)+Sm(φ,gµν))

When
Sgrav =

1
2κ2

∫ √
|g|dnxR

a definition of the composite operators Rµν (gαβ) and Tµν (gαβ, φ) should exist such that
the Dyson-Schwinger equation holds:〈

χ

∣∣∣∣√|g|(Rµν − 1
2
Rgµν − κ2Tµν

)∣∣∣∣ψ〉 = 0

where
Tµν ≡ 2√|g| δ

δgµν
(Sm + Sgf + Sgh)

10 Related remarks can be found in [35]
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and |ψ〉 and |χ〉 are states that depend on the boundary conditions. Usually they are taken
as |0±〉.

The trace of the former equation means that

ḡµν
〈
χ

∣∣∣∣√|g|(2− n
2

Rµν − κ2Tµν

)∣∣∣∣ψ〉 = 0

which means in turn that when the trace of the expectation value of the energy momentum
is constant, so is the trace of the expectation value of the scalar curvature. On the other
hand, we insist that both the scalar curvature as well as the energy-momentum tensor are
composite operators, whose definition is somewhat delicate. But this fact also tells us when
a nontrivial physical effect is at least allowed First of all, through the effect of the one-loop
gravitational counterterms,namely,

Lcount =
∫ √

|g|dnx (c1R
2 + c2R

2
µν

)
except in the renormalization scheme when the finite parts of both c1 and c2 are put equal
to zero. This changes the contribution of

δSgrav

δgµν

Counterterms are also at the origin of the trace anomaly , i.e.

ḡµν〈Tµν〉 6= 〈gµνTµν〉
which has got a piece proportional to the beta function of the theory, as well
as a gravitational piece, which is non-vanishing even for conformally invariant
theories (i.e., when β = 0).11

The conclusion of the analysis is that we do not find any obvious reason why matter ef-
fects by themselves could not destabilize de Sitter space, causing the cosmological constant
to decay. This still looks like an exciting possibility. It remains to find a self-consistent
scenario implementing this general idea. Work on these lines is currently in progress.
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A Taxonomy of constant curvature spaces

The real sections of the complex sphere can be treated in an unified way. Let us choose
coordinates in the embedding space in such a way that in the defining equation we have

X2 =
n∑

A=0

εAX
2
A ≡ ηABdXAdXB = ±l2 (A.1)
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Figure 2. A pictorial representation of Anti de Sitter (X2
0 +X2

1 = l2 + ~X2 in Rn+1
n−1).

on a flat space with metric ds2 = ηABdX
AdXB. If we change in an arbitrary manifold

gAB → −gAB, then both Christoffels and Riemann tensor remain invariant, but the scalar
curvature flips sign R → −R. We can furthermore group together times and spaces, in
such a way that

ηAB = (1t, (−1)s) (A.2)

If we call n+1 ≡ t+s, then this ambient space is Wolf’s Rn+1
s where the subindex indicates

the number of spaces.
The standard nomenclature in Wolf’s book [40] is

Sns : X ∈ Rn+1
s , X2 = l2 (A.3)

Hn
s : X ∈ Rn+1

s+1 , X
2 = −l2 (A.4)

The curvature scalar is given by:

R = ±n(n− 1)
l2

(A.5)

and

Rµν = ±n− 1
l2

gµν

Rµνρσ = ± 1
l2

(gµρgνσ − gµρgνσ) (A.6)

Please note that the curvature only depends on the sign on the second member, and not
on the signs εA themselves.

– 20 –



J
H
E
P
1
0
(
2
0
0
9
)
0
4
5

Figure 3. A pictorial representation of Euclidean Anti de Sitter (or Euclidean de Sitter) (X2
0 =

l2 + ~X2 in Rn+1
n ).

It is clear, on the other hand, that the isometry group of the corresponding manifold
is one of the real forms of the complex algebra SO(n + 1). The Killing vector fields are
explicitly given (no sum in the definition) by

LAB ≡ εAXA∂B − εBXB∂A ≡ XA∂B −XB∂A (A.7)

The square of the corresponding Killing vector is

L2 = εBX
2
A + εAX

2
B (A.8)

Our interest is concentrated on the euclidean and minkowskian cases:

• The sphere Sn ≡ Sn0 ∼ Hn
n is defined by ~X2 = l2, with isometry group SO(n+ 1).

• The euclidean Anti de Sitter (or euclidean de Sitter) EAdSn ≡ Snn ∼ Hn
0 is defined

by (X0)2 − ~X2 = l2, with isometry group SO(1, n).

• The de Sitter space dSn ≡ Hn
n−1 ∼ Sn1 is defined by (X0)2− ~X2 = −l2, with isometry

group SO(1, n). In our conventions de Sitter has negative curvature, but positive
cosmological constant.

• The Anti de Sitter space AdSn ≡ Snn−1 ≡ Hn
1 is defined by (X0)2 + (X1)2− ~X2 = l2,

with isometry group SO(2, n− 1). For us AdSn has positive curvature and negative
cosmological constant.

– 21 –



J
H
E
P
1
0
(
2
0
0
9
)
0
4
5

Figure 4. A pictorial representation of de Sitter (X2
0 = −l2 + ~X2) in Rn+1

n ).

A.1 Global coordinates

A very useful coordinate chart for these spaces is the one called global coordinates, which
nevertheless do not cover the full space in any case:

(XA) = l
(
cosh τ ~ut(Ω), sinh τ ~ns(Ω′)

)
(A.9)

where ~u and ~n are unit vectors of both t− 1 and s− 1 dimensional spheres. This is for Sns
spaces. For Hn

s spaces is simply:

(XA) = l
(
sinh τ ~ut−1(Ω), cosh τ ~ns+1(Ω′)

)
(A.10)

Our convention for a unit vector of a (n− 1)-dimensional sphere is:

~un(Ω) = (cos θ1, sin θ1 cos θ2, . . . , sin θ1 . . . sin θn−1) (A.11)

so that our convention for the “north pole” is:

Sns : N = (l, 0, . . .) ; Hn
s : N = (0, . . .︸ ︷︷ ︸

t−1

, l, 0, . . .) (A.12)

The invariant distance, that we call z, is defined as z(X,Y ) = ±X·Y
l2

, where the sign
is chosen to make z(X,X) = 1 in every space. In our cases of interest:

• Sphere: X = l ~un(Ω), z = cos θ1

• Euclidean Anti de Sitter: X = l(cosh τ, sinh τ~un−1(Ω)), z = cosh τ

• de Sitter: X = l(sinh τ, cosh τ ~un−1(Ω)), z = cosh τ cos θ1

• Anti de Sitter: X = l(cosh τ cos θ, cosh τ sin θ, sinh τ~un−2(Ω′)), z = cosh τ cos θ
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A.2 Projective coordinates

We shall further assume that εk = ±1, that is, the chosen coordinate has the same sign for
the metric as the second member in (A.4). We then define the south pole (i.e. Xk = −l)
stereographic projection for µ 6= k, as

xµS ≡
2l

Xk + l
Xµ ≡ Xµ

ΩS
(A.13)

The equation of the surface then leads to

Xk = l(2ΩS − 1) ; ΩS =
1

1± x2
S

4l2

; x2
S ≡

∑
µ6=k

εµ
(
xµS
)2 (A.14)

The metric in these coordinates is conformally flat:

ds2 = Ω2
Sηµνdx

µ
Sdx

ν
S (A.15)

We could have done projection from the North pole (for that we need that Xk 6= l).
Uniqueness of the definition of Xk needs

ΩN + ΩS = 1 (A.16)

and uniqueness of the definition of Xµ

xµN =
ΩS

ΩN
xµS = ±4l2

x2
S

xµS (A.17)

The antipodal Z2 map XA → −XA is equivalent to a change of the reference pole in
stereographic coordinates

xµN ↔ xµS (A.18)

A.3 Poincaré coordinates

A generalization of Poincaré’s metric for the half-plane can easily be obtained by introduc-
ing the horospheric coordinates. It will always be assumed that ε0 = +1, that is that X0

is a time, and also that εn = −1, that is Xn is a space, in our conventions. Otherwise (like
in the all-important case of the sphere Sn) it it not possible to construct these coordinates.

l

z
≡ X− = Xn −X0

yi ≡ zXi (A.19)

The promised generalization of the Poincaré metric is:

ds2 =
∑n−1

1 εidy
2
i ∓ l2dz2

z2
(A.20)

where the sign is the opposite to the one defined in (A.4), and the surfaces of constant z
are sometimes called horospheres. This form of the metric is conformally flat in a manifest
way.
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• In de Sitter space, dSn, z is a timelike coordinate, and its metric reads

ds2
dSn =

−∑n−1 δijdy
idyj + l2dz2

z2
(A.21)

The square of the Killing vectors M0A (candidates to be timelike) are

M2
0A = X2

0 −X2
A =

∑
B 6=A

X2
B − l2 (A.22)

so they are timelike only outside the horizon defined as

H0A ≡
∑
B 6=A

X2
B = l2 (A.23)

For example, the horizon corresponding to H0n is∑
y2
i = l2z2 (A.24)

This means that de Sitter space, dSn is not globally static.

• What one would want to call Euclidean anti de Sitter, EAdSn, has got all its coor-
dinates spacelike, and positive curvature. To be specific

ds2
EAdSn =

−∑n−1 δijdy
idyj − l2dz2

z2
(A.25)

• Finally, when the metric is given by

ds2
AdSn =

∑n−1 ηijdy
idyj − l2dz2

z2
(A.26)

(where as usual, ηij ≡ diag(1,−1n−2)) this is the Anti de Sitter, AdSn. In this case
there is a globally defined timelike Killing vector field, namely M01

M2
01 = X2

0 +X2
1 = l2 +

∑
A>1

X2
A (A.27)

that is everywhere positive. This means that Anti de Sitter space is globally static,
as opposed to de Sitter.

A.4 Conformal Invariance

Let us be very explicit with the definition of Poincaré coordinates: Let us denote

x2 ≡ y2 ∓ l2z2 ≡
∑

εiy
2
i ∓ l2z2 (A.28)

Then

X0 =
l2 − x2

2lz

Xn = − l
2 + x2

2lz

Xi =
yi

z
(i = 1 . . . n− 1) (A.29)
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This is a legitimate change of coordinates as long as we keep the radius l itself as one of
the coordinates.

Conversely,

yi =
Xi

X0 −Xn
l

z =
l

X0 −Xn

l2 = ∓ (X2
0 −X2

n + εiX
2
i

)
(A.30)

Some useful formulas:
∂

∂X0
= −z

l
yi∂i − z2

l
∂z ∓ l2 − x2

lz
∂l2

∂

∂Xn
=
z

l
yi∂i +

z2

l
∂z ∓ l2 + x2

lz
∂l2

∂

∂Xi
= z∂i ∓ 2

εiyi
z
∂l2 (A.31)

The full isometry group is some noncompact form of SO(n+ 1). In Poincaré coordinates,
there is a ISO(n−1) manifest isometry group not involving the horographic coordinate. It
will be important for us to understand all isometries in Poincaré coordinates. Let us work
out the non-explicit generators:

L0n ≡ X0∂n +Xn∂0 = yi∂i + z∂z (A.32)

L0i = X0∂i − εiXi∂0 =
∑
j

(
l2 − x2

)
δij + 2εiyiyj
2l

∂j + εiy
i z

l
∂z (A.33)

Lni = −Xn∂i − εiXi∂n =
∑
j

(
l2 + x2

)
δij − 2εiyiyj
2l

∂j − εiyi z
l
∂z (A.34)

Translations of the yi correspond to the combination:

ki ≡ l ∂
∂yi

= − (Lni + Loi) (A.35)

All spaces we are considering in this paper, which in Poincaré coordinates enjoy
the metric

ds2 =
∑i=n−1

i=1 εidy
2
i ∓ l2dz2

z2
(A.36)

are obviously scale invariant

yi → λ yi

z → λ z (A.37)

This corresponds in Weierstrass coordinates to the Lorentz transformation in the
plane

(
X0Xn

)
(
X ′
)0 =

(
λ2 + 1

)
X0 +

(
λ2 − 1

)
Xn

2λ(
X ′
)n =

(
λ2 − 1

)
X0 +

(
λ2 + 1

)
Xn

2λ
(A.38)

– 25 –



J
H
E
P
1
0
(
2
0
0
9
)
0
4
5

id est,

X− → λX−

X+ → X+

λ
(A.39)

(This ought to be more or less obvious already from the previous formula for the generator
L0n). Not only that, but also they are invariant under inversions, id est,

yi → yi∑
εiy2

i ∓ l2z2

z → z∑
εiy2

i ∓ l2z2
(A.40)

Inversions in Weierstrass coordinates look even simpler; just exchange the two light-cone
coordinates in the aforementioned plane

(
X0Xn

)
:

X+ ↔ X− (A.41)

The remaining isometries are the somewhat nasty combinations

L0i − Lni =
∑
j

(−x2
)
δij + 2εiyiyj
l

∂j + 2εiyi
z

l
∂z (A.42)

We are now in a position to study the little group H of a given point (which can always
be rotated to

P ≡
(
~y = ~0, z = 1

)
(A.43)

We know that then the space will be isomorphic to SO(n + 1)/H. The translational
isometries must be generated by the n generators

Lni + L0i

L0n (A.44)

It seems then that

H+ = {Lij , Lni}
H− = {Lij , L0i} (A.45)

The number of not compact generators is equal to the number of times in the coordinates
yi in the + case, and the number of times plus one in the minus case. This seems to
imply that

AdSn = SO(2, n− 1)/SO(1, n− 1)

EAdSn = SO(1, n)/SO(n)

dSn = SO(1, n)/SO(1, n− 1)

EdSn = SO(n, 1)/SO(n) (A.46)

Euclidean anti de Sitter EAdSn is just de Sitter dSn with imaginary radius. Euclidean
de Sitter EdSn is Euclidean anti de Sitter dSn with negative ambient metric.
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z � 0

T

Θ

Figure 5. Conformal structure of dSn. The coloured lines are z =const. surfaces in Poincaré
coordinates.

B Conformal structure

• dSn From the global coordinates in de Sitter (cf. A.1), we can define cosT = 1
cosh τ

where −π/2 ≤ T ≤ π/2 so it yields

ds2 =
l2

cos2 T

(
dT 2 − dΩ2

n−1

)
(B.1)

which is conformal to a piece of R × Sn−1, which is the Einstein static universe to
study conformal structure. The piece is a slab in the timelike direction, but otherwise
including the full three-sphere at each time. The fact that conformal infinity is
spacelike means that there are both particle and event horizons.

• AdSn The same change of coordinates from the global chart can be used, cos ρ =
1

cosh τ , where ρ ∈ (0, π/2). The space is again conformal to a piece of half Einstein’ s
static universe:

ds2 =
l2

cos2 ρ

(
dθ2 − dρ2 − sin2 ρdΩ2

n−2

)
=

l2

cos2 ρ

(
dθ2 − dΩ2

n−1

)
(B.2)

If we want to eliminate the closed timelike lines, one can consider the covering space
−∞ ≤ θ ≤ ∞. The slab of R × Sn−1 to which AdSn is conformal to includes now
the full timelike direction, but only an hemisphere at each particular time. Null and
spacelike infinity can be considered as the timelike surfaces ρ = 0 and ρ = π/2. This
implies that there are no Cauchy surfaces.
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Figure 6. Conformal structure of AdSn. The coloured lines are z =const. surfaces in Poincaré
coordinates.

C What portion of Weierstrass coordinates do Poincaré coordinates

cover?

• dSn
If we call un the n-th component of the unit vector ~u, then there is a critical value
of the parameter τ such that

tanh τ(u) = un(Ω) (C.1)

which is such that

τ < τ(u)⇒ z > 0 (C.2)

and

z → ±∞⇔ τ → τ(n)∓ (C.3)
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This means that at any given value of τ only those points on the sphere that obey

un(Ω) ≥ tanh τ (C.4)

can be represented in Poincaré coordinates. For example, when τ = ∞, that is
T = π/2, tanh τ = 1, so that only the North pole (n = 1) can be covered. At the
other extreme, when, τ = −∞, that is T = −π/2, tanh τ = −1, we can cover the full
sphere.

On the other hand, it is clear that

z → 0± ⇔ τ → ∓∞ (C.5)

There is a discontinuity at τ(n) which depends on the point in de Sitter space.

• AdSn
As in the previous case, it is clear that the region 1/z = 0 corresponds to

un−1(Ω) sin ρ = cos θ (C.6)

and the region z > 0 to
un−1(Ω) sin ρ > cos θ (C.7)

The region
z = 0 (C.8)

is dubbed the boundary (of the Poincaré patch) of AdS and corresponds to

ρ = π/2 (C.9)

Finally
z =∞ (C.10)

is usually called the horizon and corresponds to (C.6)

D Spherical harmonics

• The n-dimensional sphere. The simplest way of getting eigenfunctions of the Laplace
operator in the sphere is Helgason’s (confer [19]). Consider the following harmonic
polynomial in Rn+1

fa,λ ≡ (~a.~x)λ (D.1)

with ~a ∈ C, ~a2 = 0.

Now we know that the full laplacian in Rn+1 is

∆Rn+1 =
∂2

∂r2
+
n

r

∂

∂r
+

1
r2

∆Sn (D.2)
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This yields

∆Rn+1fa,λ = 0 =
λ2 + (n− 1)λ

r2
fa,λ +

1
r2

∆Snfa,λ (D.3)

so that the eigenvalues of the Laplacian in the sphere Sn are

− λ(λ+ n− 1) (D.4)

It is more or less equivalent to start from traceless homogeneous polynomials

P ≡
∑

P(i1...ik)x
i1 . . . xik (D.5)

The number of such animals is the number of symmetric polynomials in n variables
of degree λ minus the number of symmetric polynomials of degree λ− 2:

d(λ) =
(
λ+ n− 1

λ

)
−
(
λ+ n− 3
λ− 2

)
=

(n+ 2λ− 2) (λ+ n− 3)!
λ! (n− 2)!

(D.6)

• If we represent by µ an appropriate collection of indices, then we first build harmonic
polynomials such that ∫

Sn

dΩh∗λ′µ′hλµ = δλλ′δµµ′r
λ+λ′ (D.7)

The hyperspherical harmonics are then defined by

hλµ ≡ rλYλµ (D.8)

and are normalized in such a way that∫
Sn

dΩY ∗λ′µ′Yλµ = δλλ′δµµ′ (D.9)

• Gegenbauer polynomials are generalizations of Legendre polynomials, in the
sense that

1

|~x− ~x′|n−2
=

1

rn−2
>

(
1 +

( r<
r>

)2 − 2
(
r<
r>

)
x̂.x̂′

)n−2
2

=
1

rn−2
>

∞∑
λ=0

(
r<
r>

)λ
C
n−2

2
λ

(
x̂.x̂′

)
(D.10)

Let us now prove the sum rule for hyperspherical harmonics. For concreteness, let us
assume that

r ≡ |~x<|
r′ ≡ |~x>| (D.11)

Then it is a fact of life that

∆
1

|~x− ~x′|n−2
= 0 =

∞∑
λ=0

1

(r′)λ+n−2
∆
(
rλC

n−2
2

λ

(
x̂.x̂′

))
(D.12)
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Imposing term by term vanishing leads to(
1

rn−1

∂

∂r
rn−1 ∂

∂r
− 1
r2

∆Sn−1

)(
rλC

n−2
2

λ

(
x̂.x̂′

))
= 0 (D.13)

which conveys the fact that

∆Sn−1C
n−2

2
λ

(
x̂.x̂′

)
= −λ (λ+ n− 2)C

n−2
2

λ

(
x̂.x̂′

)
(D.14)

Since the hyperspherical harmonics are by assumption a complete set
of eigenfunctions,

C
n−2

2
λ

(
x̂.x̂′

)
=
∑
µ

aλµ
(
~x′
)
Yλµ (x̂) (D.15)

where

aλµ
(
~x′
)

=
∫
x̂
C
n−2

2
λ

(
x̂.x̂′

)
Y ∗λµ (x̂) =

2(n− 2)πn/2

Γ(n/2) (2λ+ n− 2)
Y ∗λµ

(
x̂′
)

(D.16)

This is related to the degeneracy d(λ) of hyperspherical harmonics in the following
way. Choosing x̂ = x̂′, the sum rule leads to

C
n−2

2
λ (1) = Kλ

∑
µ

Y ∗λµ
(
~x′
)
Yλµ (x̂) (D.17)

Integrating now over the unit sphere

C
n−2

2
λ (1)V (Sn−1) = Kλ

∑
µ

1 = Kλd(λ) (D.18)

The result is
d(λ) =

(n+ 2λ− 2) (λ+ n− 3)!
λ! (n− 2)!

(D.19)

• Let us now become more specific and perform some computations in gory detail. The
metric on Sn is

ds2
n = dθ2

n + sin2 θndθ
2
n−1 + . . .+ sin2 θn sin2 θn−1 . . . sin2 θ2dθ

2
1 (D.20)

id est, in a recurrent form

ds2
1 = dθ2

1

ds2
n = dθ2

n + sin2 θn ds
2
n−1 (D.21)

This corresponds to polar coordinates in Rn

Xn+1 = cos θn
Xn = sin θn cos θn−1

. . .

X2 = sin θn sin θn−1 . . . cos θ1

X1 = sin θn sin θn−1 . . . sin θ1 (D.22)
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Spherical harmonics have been constructed quite explicitly by Higuchi [20], are
such that

∆nYjn...j1(θn . . . θ1) = −jn(jn + n− 1)Yjn...j1(θn . . . θ1) (D.23)

We shall explicitly write down the laplacian in a moment. They are orthonormal
with respect to the induced riemannian measure

dΩn ≡
√
|g|dθ1 ∧ . . . dθn = dθ1 . . . dθn sinn−1 θn sinn−2 θn−1 . . . sin θ2 (D.24)

The laplacian is easily found to be

∆Sn =
(
∂2

∂θ2
n

+ (n− 1) cot θn
∂

∂θn

)
+

1
sin2 θn

(
∂2

∂θ2
n−1

+ (n− 2) cot θn−1
∂

∂θn−1

)
+ . . .

+
1

sin2 θn sin2 θn−1 . . . sin2 θ2

∂2

∂θ2
1

(D.25)

Another useful recurrence

dΩn = sinn−1 θndθndΩn−1 (D.26)

and

V (Sn−1) =
∫
dΩn−1 =

2πn/2

Γ(n/2)
(D.27)

To be specific,∫
dΩnYjn...j1(θn . . . θ1)Y ∗j′n...j′1(θn . . . θ1) = δjn,j′n . . . δjn,j′n (D.28)

• It is obvious that any function on the sphere can be expanded

f(Ω) =
∑
jn...j1

Cjn...j1Yjn...j1(θn . . . θ1)

=
∑
jn...j1

∫
dΩ′Y ∗jn...j1(θ′n . . . θ

′
1)f(θ′n . . . θ

′
1)Yjn...j1(θn . . . θ1)

which means ∑
jn...j1

Y ∗jn...j1(θ′n . . . θ
′
1)Yjn...j1(θn . . . θ1) ≡ δ(Ω− Ω′) (D.29)

where by definition ∫
dΩ′δ(Ω− Ω′)f(θ′) = f(θ) (D.30)

whence in a somewhat symbolic form,

δ(Ω− Ω′) = δ(θ′1 − θ1) . . . δ(θ′n − θn) sin−(n−1) θ′n sin−(n−2) θ′n−1 . . . sin
−1 θ′2 (D.31)
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Now we can expand this function, as any other function, in series of
Gegenbauer polynomials

δ(Ω− Ω′) =
∑
j

djC
ν
j (cos θn) (D.32)

Let us choose our reference frame in such a way that

Ω · Ω′ ≡ cos θn (D.33)

id est, Ω′ is pointing towards the North pole.

On functions constant on Sn−1,

dΩn =
2π

n
2

Γ(n2 )
sinn−1 θn dθn (D.34)

and, denoting x ≡ cos θn

dΩn =
2π

n
2

Γ(n2 )
(
1− x2

)n−2
2 dx (D.35)

as well as

δ(Ω) =
Γ(n2 )

2π
n
2

δ(θn)
1

sinn−1 θn
=

Γ(n2 )

2π
n
2

δ(1− x)(1− x2)
2−n

2 (D.36)

We can now integrate the two sides of the equation (D.32) against Cνj′(x)(1−x)ν−1/2.
The orthogonality property∫ 1

−1
dxCνj (x)Cνj′(x)(1− x2)ν−1/2 = δjj′

21−2νπΓ(j + 2ν)
j!(ν + j)Γ(ν)2

(D.37)

then implies

dj
21−2νπΓ(j + 2ν)
j!(ν + j)Γ(ν)2

=
Γ(n2 )

2π
n
2

∫ 1

−1
dxCνj (x)(1− x2)1−n/2δ(x− 1)(1− x2)ν−1/2 (D.38)

The member of the right converges when ν = n−1
2 . Given in addition the fact that

Cνj (1) =
Γ(j + 2ν)
j! Γ(2ν)

(D.39)

we can write

dj =
Γ(n2 )(j + n−1

2 )Γ(n−1
2 )2

Γ(n− 1)π
n+1

2 23−n
=

1
V (Sn)

n− 1 + 2j
n− 1

(D.40)

(using Γ(2x) = 21−2x√πΓ(x+ 1
2)/Γ(x)) as well as

δ(Ω− Ω′) =
∑
j

1
V (Sn)

n− 1 + 2j
n− 1

C
n−1

2
j (cos θn)

∑
jn...j1

Y ∗jn...j1(θ′n = 0 . . . θ′1)Yjn...j1(θn . . . θ1) =
∑
j

1
V (Sn)

n− 1 + 2j
n− 1

C
n−1

2
j (cos θn)

(D.41)
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If we employ the notation j ≡ jn and ~m ≡ (jn−1 . . . j1), then the preceding formula
presumably means that∑

~m

Y ∗j... ~m(Ωz)Yj... ~m(Ω) =
1

V (Sn)
n− 1 + 2j
n− 1

C
n−1

2
j (cos θn) (D.42)

• We begin by defining some eigenfunctions of the differential operator:

D ≡ ∂2

∂θ2
+ (N − 1) cot θ

∂

∂θ
− j (j +N − 2)

sin2 θ
(D.43)

such that
DP̄ jNk(θ) = −k (k +N − 1) P̄ jNk(θ) (D.44)

The form we are going to need is(
∂2

∂θ2
+ (N − 1) cot θ

∂

∂θ

)
P̄ jNk(θ) =

(
j (j +N − 2)

sin2 θ
− k (k +N − 1)

)
P̄ jNk(θ)

(D.45)
To be specific,

P̄ jNk(θ) ≡ cjNk (sin θ)−
N−2

2 P
−(j+N−2

2 )
k+N−2

2

(cos θ) (D.46)

where Pµν (z) are Legendre functions , and the normalization is given by

cjNk ≡
√

2k +N − 1
2

(k + j +N − 2)!
(k − j)! (D.47)

The differential equation that Legendre functions Pµν (z) are solutions of is given by

Lw(z) ≡ (1− z2
) d2w

dz2
− 2z

dw

dz
+
(
ν (ν + 1)− µ2

1− z2

)
w = 0 (D.48)

Changing variables z = cos θ this reads(
∂2

∂θ2
+ cot θ

∂

∂θ
− µ2

sin2 θ

)
w (cos θ) = −ν (ν + 1)w (cos θ) (D.49)

and using this it is not difficult to actually prove the basic equation (D.44).

The harmonics themselves are given by:

Yjn...j1(θn, . . . , θ1) ≡
n∏

m=2

P̄
jm−1

mjm
(θm)

1√
2π
eij1θ1 (D.50)

It is actually easy to check. From the expression for the laplacian, the operator acting
on θ1, just leads to

− j2
1

sin2 θn . . . sin2 θ2
(D.51)

Next, the operator acting on θ2, corresponding to N = 2,k = j2 and j = j1, yields

j2
1

sin2 θn . . . sin2 θ2
− j2(j2 + 1)

sin2 θn . . . sin2 θ3
(D.52)
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Next, the operator acting on θ3, which corresponds to N = 3, k = j3 and j = j2, gives

j2(j2 + 1)
sin2 θn . . . sin2 θ3

− j3(j3 + 2)
sin2 θn . . . sin2 θ4

(D.53)

After all pairwise cancellations, we are left with the last term, corresponding to
N = n, k = jn and j = jn−1, yielding the eigenvalue

− jn(jn + n− 1) (D.54)

• We can now employ the expansion (GR, 8.534)

eimρ cos φ = 2νΓ(ν)
∞∑
k=0

(ν + k)ik(mρ)−νJν+k(mρ)Cνk (cos φ) (D.55)

and using our expansion of the Gegenbauer polynomials in terms of
spherical harmonics,

eizΩ.Ω
′

= 2n/2−1Γ(n/2− 1)
∞∑
k=0

(n/2− 1 + k)ik(z)−(n/2−1)Jn/2−1+k(z)

Ck,n
∑
~m

Y ∗k...~m(Ω)Yk...~m(Ω′) (D.56)

where Cl,n are appropriate constants.
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